4.7 Article

Mangrove Streptomyces sp BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 98, Issue -, Pages 12-17

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2012.03.032

Keywords

Mangrove; Streptomyces; Extracellular biosynthesis; AgNPs; Antibacterial activity

Funding

  1. University Grant Commission (UGC)
  2. Department of Science and Technology (DST), New Delhi, Government of India

Ask authors/readers for more resources

Biosynthesis has led to the development of various biomimetic approaches for the fabrication of nanoscale materials. The present study reveals a unique procedure for the biosynthesis of bactericidal silver nanoparticles (AgNPs) using a novel Streptomyces sp. BDUKAS10, an isolate of mangrove sediment. Aqueous silver nitrate (AgNO3) solution was treated with cell free supernatant (CFS) of the isolate to synthesize bactericidal silver nanoparticles. Initial characterization was performed by visual observation for color change to intense brown color. UV-visible spectrophotometry (UV-vis) for measuring surface plasmon resonance indicated a maximum absorption peak at 441 nm. Fourier Transform Infrared Spectroscopy (FTIR) analysis provides evidence for proteins as possible reducing, and capping agents. Energy dispersive X-ray (EDAX) spectroscopy analysis showed elemental silver as major signal. Transmission Electron Microscopy (TEM) study indicated spherical silver nanoparticles in the size range of 21-48 nm. Compared to the CFS, the biosynthesized AgNPs exemplified superior bactericidal efficacy towards the tested bacterial strains. Results from this study suggested that Streptomyces sp. BDUKAS10 can be advantageous for the synthesis of AgNPs by extracellular method in the view of sustainable and ecofriendly approach. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available