4.7 Article

In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 88, Issue 1, Pages 254-259

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2011.06.040

Keywords

Magnesium alloy; Ca-deficient hydroxyapatite coating; Degradation behavior; Bone response

Funding

  1. National Natural Science Foundation of China [30870634]

Ask authors/readers for more resources

In present paper, an in vivo study was carried out on uncoated and calcium-deficient hydroxyapatite (Ca-def HA) coated Mg-Zn-Ca alloy to investigate the effect of Ca-def HA coating on the degradation behavior and bone response of magnesium substrate. Magnesium alloy rods were implanted into rabbit femora and evaluated during 24 weeks implantation. The characterization of both implants indicates that in vivo degradation of the Ca-def HA coating and magnesium substrate occurs almost simultaneously, and in vivo valid life of the coating is about 8 weeks, after that the degradation rate of the coated implants increases obviously. The main reasons for the Ca-def HA coating degradation can be attributed to its reaction with body fluid and the substitution of Mg2+ ions in Ca-def HA. Histopathological examinations show that the Ca-def HA coating has good osteoconductivity and is in favor of the formation of more new bone on the surface of magnesium alloy. So the Ca-def HA coating could not only slow down in vivo degradation of magnesium alloy but also improve its bone response. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available