4.6 Article

Enhanced diamond nucleation on copper substrates by employing an electrostatic self-assembly seeding process with modified nanodiamond particles

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfa.2012.07.020

Keywords

Nanodiamond seeding; Surface modification; CVD diamond film; Electrostatic self-assembly; Interaction energy; Copper substrate

Ask authors/readers for more resources

Nanodiamond seeding is a well-established approach to enhancing the nucleation density in chemical vapor deposition (CVD) diamond growth. However, the effects of nanodiamond seeding are highly dependent upon the dispersion properties of nanodiamond particles, the solvent and the interaction between nanoparticles and substrate surfaces. Surface modification and fractionalization were employed to improve the dispersion of nanodiamond particles and separate those particles into a more narrow range of particle size. Mono-dispersed nanodiamonds with a zeta-potential and average particle size of -41.5 mV and similar to 25.3 nm, respectively, were then obtained. They can be charged on copper substrate without any contaminations. Two-dimensional self-assemblies of nanodiamond seeding were actualized. The density and homogeneity of nanodiamond particles which act as pre-existing sp(3) seeds shorten the incubation time of diamond nucleation to less than 30 min. High quality of 750 nm thick continuous diamond film was deposited on copper substrate in 60 min. Furthermore, we calculated electrostatic interaction energy between nanodiamond particle and copper substrate by using the nonlinear Poisson-Boltzmann theory, and discussed interaction energy of nanodiamond-Cu substrate and nanodiamond-nanodiamond in the seeding process. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available