4.4 Article

Growth mechanism of gold nanoparticles decorated on polystyrene spheres via self-regulated reduction

Journal

COLLOID AND POLYMER SCIENCE
Volume 288, Issue 4, Pages 395-403

Publisher

SPRINGER
DOI: 10.1007/s00396-009-2134-9

Keywords

Surfactant-free; Polystyrene spheres; Self-regulated reduction; Nanoparticle

Ask authors/readers for more resources

Uniform polystyrene (PS) microspheres prepared for deposition of metallic nanoparticles were synthesized using the surfactant-free emulsion polymerization based on styrene/potassium persulfate/water (St/KPS/H2O) system. Owing to the presence of sulfate groups, the PS microspheres can be utilized to reduce gold nanoparticles without adding extra reducing agent into the mixture. The synthesis and characterization of metal-polystyrene nanocomposites are reported, and a possible reduction mechanism is proposed: by heating the aqueous solution in the presence of metal ions and PS, the sulfate chain end groups of the PS hydrolyzed and transformed to hydroxyl groups firstly. The hydroxyl groups function as a reducing agent, and carboxylic groups provide a site to adsorb the gold nuclei. The Au nanoparticles grow in size with the coalescence and dissolving of nuclei through the Ostwald ripening process. The PS microspheres and Au nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray power diffraction, and thermal gravimetric analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available