4.4 Article

The effect of polymer architecture on the nano self-assemblies based on novel comb-shaped amphiphilic poly(allylamine)

Journal

COLLOID AND POLYMER SCIENCE
Volume 286, Issue 13, Pages 1511-1526

Publisher

SPRINGER
DOI: 10.1007/s00396-008-1925-8

Keywords

self-assembly; nanoparticles; micelle; amphiphilic polymer

Funding

  1. The Cunningham Trust

Ask authors/readers for more resources

Twelve novel poly(allylamine) (PAA)-based, comb-shaped amphiphilic polymers have been developed. Hydrophobic groups of cetyl, palmitoyl and cholesteryl were randomly grafted to PAA and quaternisation was carried out on some modified polymers. Polymers were characterised using H-1 NMR, elemental analysis and differential scanning calorimetry. All polymers formed nano self-assemblies in the aqueous solution with a positive zeta potential and were able to encapsulate a hydrophobic agent, methyl orange, in the core. The critical aggregation concentration (CAC) and the microviscosity were found to be dependent on the polymer hydrophobicity. Being the most hydrophobic polymer, cholesteryl-grafted PAA had the lowest CAC (0.02 mg mL(-1)) and the highest microviscosity. They appeared to form dense nanoparticles and were transformed into novel nanostructures in the presence of free cholesterol. Palmitoyl-grafted polymers formed nanoparticles while cetyl-grafted polymers formed polymeric micelles. The flexibility of cetyl chains possibly resulted in the formation of multicore polymeric micelles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available