4.4 Article

Growth regimes and spherulites in thin-film poly(ε-caprolactone) with amorphous polymers

Journal

COLLOID AND POLYMER SCIENCE
Volume 286, Issue 8-9, Pages 917-926

Publisher

SPRINGER
DOI: 10.1007/s00396-008-1848-4

Keywords

crystallization regime; PCL; blends

Ask authors/readers for more resources

Spherulite ring-band patterns and growth regimes in neat poly(epsilon-caprolactone) (PCL) and its miscible blends were analyzed using polarized-light optical microscopy and differential scanning calorimetry (DSC). Spherulite growth in thin-film forms and transformation of spherulite patterns in different regimes were investigated by comparing neat PCL with its miscible blends. Three miscible diluents in PCL were probed: poly(p-vinyl phenol) (PVPh), poly(benzyl methacrylate) (PBzMA), and poly(phenyl methacrylate) (PPhMA), which represent strong H-bonding and weak polar interactions, respectively. Blending of PCL with miscible amorphous polymers changes the spherulite patterns significantly. The effect of different diluent polymers varies. Inclusion of different amorphous polymers in PCL leads to different extents of suppression in growth rates and induces different spherulitic patterns. The H-bonding interaction leads to that the PCL/PVPh blend shows dendritic crystals and no ring bands. Although PPhMA differs from PBZMA only by a methylene in the chemical structure of repeat unit, the coil-like textures of ring bands in the PCL/PPhMA blend are widely different from the zig-zag ring bands in the PCL/PBzMA blend. Regime plots show that the growth of neat PCL behaves quite differently from any of its blends with amorphous polymers (PVPh, PPhMA, or PBzMA). Regime plots for PCL/PBzMA blend also differ from those for the PCL/PPhMA blend, which correlates with the crystal patterns seen in these two blend systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available