4.7 Article

Increasing wave heights and extreme value projections: The wave climate of the US Pacific Northwest

Journal

COASTAL ENGINEERING
Volume 57, Issue 5, Pages 539-552

Publisher

ELSEVIER
DOI: 10.1016/j.coastaleng.2009.12.005

Keywords

Coastal hazards; Coastal engineering design; Extreme values; Increasing storminess; Lognormal distribution; Oregon; Significant wave height; Washington

Funding

  1. U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) under NOAA [NA08OAR4310693]
  2. NOAA [NA06OAR4170010]
  3. NOAA NCDC Integrated Data and Environmental Applications (IDEA) Center via the East West Center [12255]

Ask authors/readers for more resources

Deep-water wave buoy data offshore from the U.S. Pacific Northwest (Oregon and Washington) document that the annual averages of deep-water significant wave heights (SWHs) have increased at a rate of approximately 0.015 m/yr since the mid-1970s, while averages of the five highest SWHs per year have increased at the appreciably greater rate of 0.071 m/yr. Histograms of the hourly-measured SWHs more fully document this shift toward higher values over the decades, demonstrating that both the relatively low waves of the summer and the highest SWHs generated by winter storms have increased. Wave heights associated with higher percentiles in the SWH cumulative distribution function are shown to be increasing at progressively faster rates than those associated with lower percentiles. This property is demonstrated to be a direct result of the probability distributions for annual wave climates having lognormal- or Weibull-like forms in that a moderate increase in the mean SWH produces significantly greater increases in the tail of the distribution. Both the linear regressions of increasing annual averages and the evolving probability distribution of the SWH climate, demonstrating the non-stationarity of the Pacific Northwest wave climate, translate into substantial increases in extreme value projections, important in coastal engineering design and in quantifying coastal hazards. Buoy data have been analyzed to assess this response in the wave climate by employing various time-dependent extreme value models that directly compute the progressive increases in the 25- to 100-year projections. The results depend somewhat on the assumptions made in the statistical procedures, on the numbers of storm-generated SWHs included, and on the threshold value for inclusion in the analyses, but the results are consistent with the linear regressions of annual averages and the observed shifts in the histograms. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available