4.7 Article

Impact of dredging and dumping on the stability of ebb-flood channel systems

Journal

COASTAL ENGINEERING
Volume 57, Issue 6, Pages 553-566

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.coastaleng.2009.12.004

Keywords

Estuaries; Tidal channels; Dredging; Dumping; Westerschelde; Observations

Ask authors/readers for more resources

The impact of dredging and dumping on the morphologic stability of the tidal channels is investigated using morphologic field observations for the Westerschelde estuary dating back to 1955. The results are used to verify the theoretical concept presented by Wang and Winterwerp (2001). This concept states that a critical threshold for the amount of sediment dumping exists above which a channel system in equilibrium may become unstable and degenerate. The value of this threshold amounts to 5-10% of the total sediment transport capacity. Verification of this concept using field observations is not straightforward as the morphology of tidal channel often changes as a result of both natural processes and human interferences, i.e. the channels are not in equilibrium. In addition, the morphological timescales associated with channel degeneration are large (decades to centuries). Verification of the theory thus requires a careful analysis of abundant morphological data and numerical modeling of sediment transports. The results of such analyses presented in this study confirm the existence and the approximate magnitude of the critical level for dumping that follows from theory. Refined guidelines are derived to use the theoretical concept as an engineering tool for the evaluation and design of strategies for dumping in estuarine multi-channel systems. In the absence of the required morphological data the indicative theoretical level of 5-10% can be used to obtain a first estimate of the dump capacity in two-channel systems. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available