4.3 Article Proceedings Paper

A Bayesian adaptive design with biomarkers for targeted therapies

Journal

CLINICAL TRIALS
Volume 7, Issue 5, Pages 546-556

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1740774510372657

Keywords

-

Funding

  1. NCI NIH HHS [P30 CA014520, P30 CA14520] Funding Source: Medline

Ask authors/readers for more resources

Background Targeted therapies are becoming increasingly important for the treatment of various diseases. Biomarkers are a critical component of a targeted therapy as they can be used to identify patients who are more likely to benefit from a treatment. Targeted therapies, however, have created major challenges in the design, conduct, and analysis of clinical trials. In traditional clinical trials, treatment effects for various biomarkers are typically evaluated in an exploratory fashion and only limited information about the predictive values of biomarkers obtained. Purpose New study designs are required, which effectively evaluate both the diagnostic and the therapeutic implication of biomarkers. Methods The Bayesian approach provides a useful framework for optimizing the clinical trial design by directly integrating information about biomarkers and clinical outcomes as they become available. We propose a Bayesian covariate-adjusted response-adaptive randomization design, which utilizes individual biomarker profiles and patient's clinical outcomes as they become available during the course of the trial, to assign the most efficacious treatment to individual patients. Predictive biomarker subgroups are determined adaptively using a partial least squares regression approach. Results A series of simulation studies were conducted to examine the operating characteristics of the proposed study design. The simulation studies show that the proposed design efficiently identifies patients who benefit most from a targeted therapy and that there are substantial savings in the sample size requirements when compared to alternative designs. Limitations The design does not control for the type I error in the traditional sense and a positive result should be confirmed by conducting an independent phase III study focusing on the selected biomarker profile groups. Conclusions We conclude that the proposed design may serve a useful role in the early efficacy phase of targeted therapy development. Clinical Trials 2010; 7: 546-556. http://ctj.sagepub.com

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available