4.7 Review

The ACE2 gene: its potential as a functional candidate for cardiovascular disease

Journal

CLINICAL SCIENCE
Volume 124, Issue 1-2, Pages 65-76

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/CS20120269

Keywords

angiotensin-converting enzyme 2 (ACE2); coronary artery disease; hypertension; left ventricular hypertrophy; myocardial infarction; renin-angiotensin system (RAS)

Ask authors/readers for more resources

The RAS (renin angiotensin system) plays an important role in the pathophysiology of CVD (cardiovascular disease), and RAS blockade is an important therapeutic strategy in the management of CVD. A new counterbalancing arm of the RAS is now known to exist in which ACE (angiotensin-converting enzyme) 2 degrades Ang (angiotensin) II, the main effector of the classic RAS, and generates Ang-(1-7). Altered ACE2 expression is associated with cardiac and vascular disease in experimental models of CVD, and ACE2 is increased in failing human hearts and atherosclerotic vessels. In man, circulating ACE2 activity increases with coronary heart disease, as well as heart failure, and a large proportion of the variation in plasma ACE2 levels has been attributed to hereditary factors. The ACE2 gene maps to chromosome Xp22 and this paper reviews the evidence associating ACE2 gene variation with CVD and considers clues to potential functional ACE2 variants that may alter gene expression or transcriptional activity. Studies to date have investigated ACE2 gene associations in hypertension, left ventricular hypertrophy and coronary artery disease, but the results have been inconsistent. The discrepancies may reflect the sample size of the studies, the gender or ethnicity of subjects, the cardiovascular phenotype or the ACE2 SNP investigated. The frequent observation of apparent sex-dependence might be of special importance, if confirmed. As yet, there are no studies to concurrently assess ACE2 gene polymorphisms and circulating ACE2 activity. Large-scale carefully conducted clinical studies are urgently needed to clarify more precisely the potential role of ACE2 in the CVD continuum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available