4.7 Review

Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+

Journal

CLINICAL SCIENCE
Volume 118, Issue 1-2, Pages 1-18

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/CS20090086

Keywords

divalent cation; kidney; hereditary disorder; reabsorption; tubular transport

Funding

  1. Netherlands Organization for Scientific Research [ZonMw 9120.6110]
  2. European Science Foundation
  3. Dutch Kidney Foundation [C05.2134]

Ask authors/readers for more resources

The kidney plays an important role in maintaining the systemic Ca2+ and Mg2+ balance. Thus the renal reabsorptive capacity of these cations can be amended to adapt to disturbances in plasma Ca2+ and Mg2+ concentrations. The reabsorption of Ca2+ and Mg2+ is driven by transport of other electrolytes, sometimes through selective channels and often supported by hormonal stimuli. It is, therefore, not surprising that monogenic disorders affecting such renal processes may impose a shift in, or even completely blunt, the reabsorptive capacity of these divalent cations within the kidney. Accordingly, in Dent's disease, a disorder with defective proximal tubular transport, hypercalciuria is frequently observed. Dysfunctional thick ascending limb transport in Bartter's syndrome, familial hypomagnesaemia with hypercalciuria and nephrocalcinosis, and diseases associated with Ca2+-sensing receptor defects, markedly change tubular transport of Ca2+ and Mg2+. In the distal convolutions, several proteins involved in Mg2+ transport have been identified [TRPM6 (transient receptor potential melastatin 6), proEGF (pro-epidermal growth factor) and FXYD2 (Na+/K+-ATPas-2 gamma-subunit)]. In addition, conditions such as Gitelman's syndrome, distal renal tubular acidosis and pseudohypoaldosteronism type II, as well as a mitochondrial defect associated with hypomagnesaemia, all change the renal handling of divalent cations. These hereditary disorders have, in many cases, substantially increased our understanding of the complex transport processes in the kidney and their contribution to the regulation of overall Ca2+ and Mg2+ balance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available