4.7 Review

Role of TNF-α in vascular dysfunction

Journal

CLINICAL SCIENCE
Volume 116, Issue 3-4, Pages 219-230

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/CS20080196

Keywords

inflammation; macrovascular circulation; microvascular circulation; nitric oxide; reactive oxygen species (ROS); tumour necrosis factor-alpha (TNF-alpha)

Funding

  1. Pfizer Atorvastatin Research [2004-37]
  2. American Heart Association Scientist Development [110350047A]
  3. National Institutes of Health [RO1-HL077566]

Ask authors/readers for more resources

Healthy vascular function is primarily regulated by several factors including EDRF (endothelium-dependent relaxing factor), EDCF (endothelium-dependent contracting factor) and EDHF (endothelium-dependent hyperpolarizing factor). Vascular dysfunction or injury induced by aging, smoking, inflammation, trauma, hyperlipidaemia and hyperglycaemia are among a myriad of risk factors that may contribute to the pathogenesis of many cardiovascular diseases, such as hypertension, diabetes and atherosclerosis. However, the exact mechanisms underlying the impaired vascular activity remain unresolved and there is no current scientific consensus. Accumulating evidence suggests that the inflammatory cytokine TNF (tumour necrosis factor)-alpha plays a pivotal role in the disruption of macrovascular and microvascular circulation both in vivo and in vitro. AGEs (advanced glycation end-products)/RAGE (receptor for AGEs), LOX-1 [lectin-like oxidized low-density lipoprotein receptor-1) and NF-kappa B (nuclear factor kappa B) signalling play key roles in TNF-alpha expression through an increase in circulating and/or local vascular TNF-alpha production. The increase in TNF-alpha expression induces the production of ROS (reactive oxygen species), resulting in endothelial dysfunction in many pathophysiological conditions. Lipid metabolism, dietary supplements and physical activity affect TNF-alpha expression. The interaction between TNF-alpha and stem cells is also important in terms of vascular repair or regeneration. Careful scrutiny of these factors may help elucidate the mechanisms that induce vascular dysfunction. The focus of the present review is to summarize recent evidence showing the role of TNF-alpha in vascular dysfunction in cardiovascular disease. We believe these findings may prompt new directions for targeting inflammation in future therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available