4.7 Article

Mechanical Properties and Damage Tolerance of Bulk Yb3Al5O12 Ceramic

Journal

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
Volume 31, Issue 4, Pages 369-374

Publisher

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2015.01.002

Keywords

Yb3Al5O12; Mechanical properties; Damage; Strength

Funding

  1. National Outstanding Young Scientist Foundation [59925208]
  2. National Natural Science Foundation of China [50672102, 50832008, U1435206]

Ask authors/readers for more resources

Yb3Al5O12 has potential applications as thermal barrier coatings (TBCs) because it shows low thermal conductivity and close thermal expansion coefficient to nickel-based superalloys. As a prospective TBC material, besides superior thermal properties, the mechanical properties are also important. In this paper, we present the mechanical properties of Yb3Al5O12 including elastic moduli, hardness, strength, and fracture toughness. The Young's modulus of Yb3Al5O12 is 282 GPa. The shear-modulus-to-bulkmodulus ratio of Yb3Al5O12 is 0.63, which indicates relatively low shear deformation resistance. In addition, Yb3Al5O12 exhibits high strength and fracture toughness but low hardness compared to yttria stabilized zirconia (YSZ), the most successful TBC material. SEM observation reveals that the fracture surface of Yb3Al5O12 displays layered structure feature, which is caused by crack deflection. Investigation based on Hertzian contact test demonstrates that Yb3Al5O12 is a damage-tolerant ceramic. Crack deflection and bridging can arouse shear faults, dissipate the local damage energy, and restrict the crack propagation within the material, which play an important role in enhancing the damage tolerance. The superior mechanical properties and good damage tolerance ensure Yb3Al5O12 a promising candidate for TBC applications. Copyright (C) 2015, The editorial office of Journal of Materials Science & Technology. Published by Elsevier Limited. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available