4.6 Article

Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 50, Issue 19, Pages 6321-6328

Publisher

SPRINGER
DOI: 10.1007/s10853-015-9172-0

Keywords

-

Funding

  1. China Postdoctoral Science Foundation [2014M561455]
  2. National Natural Science Foundation of China [5137112]

Ask authors/readers for more resources

TiO2-B nanowires with remarkable mesoporous structure via a template-free low-temperature hydrothermal fabrication route have been prepared by employing titanium glycolate (TG) as a precursor. The formation of mesopores in TiO2-B nanowires is caused by the evolvement of vacancies derived from the chains of TG. The product is characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption-desorption, and electron microscopy. The lithium-ion storage capacity of mesoporous TiO2-B nanowires is evaluated by galvanostatic measurements. The initial discharge-charge capacities of the material are 310 and 231 mAh g(-1) at a current density of 50 mA g(-1), respectively. A discharge capacity of 198 mAh g(-1) is still retained when charge-discharge at 1.0 A g(-1) for 50 cycles, demonstrating the high-rate performance and good cycle ability. The large reversible capacity, high-rate performance, and good cycle ability of the material are attributed to unique mesoporous structure and intrinsic properties of the TiO2-B nanowires. The mesoporous TiO2-B nanowire synthesized from TG is promising for use as an anode material for lithium-ion batteries with high power and energy densities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available