4.6 Article Proceedings Paper

Molecular Techniques to Detect Biofilm Bacteria in Long Bone Nonunion: A Case Report

Journal

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
Volume 469, Issue 11, Pages 3037-3042

Publisher

SPRINGER
DOI: 10.1007/s11999-011-1843-9

Keywords

-

Ask authors/readers for more resources

Biofilms cause chronic infections including those associated with orthopaedic hardware. The only methods that are Food and Drug Administration-approved for detecting and identifying bacterial infections are cultures and selected DNA-based polymerase chain reaction methods that detect only specific pathogens (eg, methicillin-resistant Staphylococcus aureus). New DNA-based technologies enable the detection and identification of all bacteria present in a sample and to determine the antibiotic sensitivities of the organisms. A 34-year-old man sustained an open tibia fracture. He experienced 3 years of delayed healing and episodic pain. In addition to his initial treatment, he underwent three additional surgeries to achieve fracture healing. During the last two procedures, cultures were taken and samples were tested with the IBIS T5000 and fluorescence in situ hybridization (FISH). In both cases, the cultures were negative, but the IBIS and FISH confirmed the presence of a biofilm within the tibial canal. Examinations of tissues from biofilm infections, by DNA-based molecular methods and by direct microscopy, have often found bacteria present despite negative cultures. Infections associated with orthopaedic hardware may be caused by bacteria living in biofilms, and these biofilm organisms are particularly difficult to detect by routine culture methods. Rapid DNA-based detection methods represent a potentially clinically useful tool in the detection of bacterial biofilms. The sensitivity and clinical impact of the technology has yet to be established.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available