4.5 Article

Template-Engaged In Situ Synthesis of Carbon-Doped Monoclinic Mesoporous BiVO4: Photocatalytic Treatment of Rhodamine B

Journal

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
Volume 24, Issue 6, Pages 2359-2367

Publisher

SPRINGER
DOI: 10.1007/s11665-014-1370-4

Keywords

carbon-doped; monoclinic mesoporous BiVO4; rhodamine B; template-engaged in situ synthesis; visible-light photocatalysis

Funding

  1. National Natural Science Foundation of China [21207099, 21273162]
  2. Science and Technology Commission of Shanghai Municipality, China [11nm0501000, 12ZR1451100]
  3. Key Subject of Shanghai Municipal Education Commission [J50102]
  4. Fundamental Research Funds for the Central Universities, China [2011KJ023]

Ask authors/readers for more resources

In this paper, carbon-doped monoclinic scheelite mesoporous bismuth vanadate was synthesized through template-engaged in situ method. The bismuth nitrate pentahydrate and ammonia metavanadate were used as bismuth and vanadium precursors, respectively, glucose as carbon source, and mesoporous SiO2 aerogel as a hard template. Carbon-doped monoclinic mesoporous BiVO4 were obtained by heat treatment of BiVO4/glucose/template to carbonize glucose and form monoclinic crystal, followed by etching with NaOH solution to remove the SiO2 template. The samples were characterized by x-ray diffraction, N-2 adsorption and desorption, UV-visible spectroscopy, Energy dispersive spectrometry, Raman spectroscopy, and Transmission electron microscopy. It was found that the sample with a carbon content of 0.5 wt.% possesses a specific surface area of 10.2 m(2)/g and has mesoporous structure with the most probable pore size of 13.9 nm. The band gap of carbon-doped monoclinic mesoporous BiVO4 was estimated to be 2.33 eV, indicating the superior photocatalytic activity under visible light. The photocatalytic efficiency of carbon-doped monoclinic mesoporous BiVO4 for the degradation of Rhodamine B under visible light (k> 400 nm) in 120 min reaches 98.7%, Besides, the carbon-doped monoclinic mesoporous BiVO4 photocatalyst still showed high stability: 85% for Rhodamine B degradation after ten recycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available