4.4 Article

Snapshots of lignin oxidation and depolymerization in archaeological wood: an EGA-MS study

Journal

JOURNAL OF MASS SPECTROMETRY
Volume 50, Issue 10, Pages 1103-1113

Publisher

WILEY
DOI: 10.1002/jms.3631

Keywords

EGA-MS; archaeological wood; lignin; polysaccharides; oxidation; depolymerization

Funding

  1. project PRIN 'Sustainability in cultural heritage: from diagnosis to the development of innovative systems for consolidation, cleaning and protection' - Italian Ministry for University and Research (MIUR) [2010329WPF, CUP: I51J12000280001]

Ask authors/readers for more resources

Evolved gas analysis-mass spectrometry (EGA-MS) was used for the first time to study archaeological wood, in order to investigate its chemical degradation. The archaeological wood was from an oak pile from a stilt house found in the Neolithic La Marmotta' village (Lake Bracciano, Rome, Italy). The sampling was performed from the external to the internal part of the pile, following the annual growth rings in groups of five. In addition, sound oak wood and isolated wood components (holocellulose and cellulose) were also analyzed, and the results were used to highlight differences because of degradation. Our study demonstrated that EGA-MS provides information on the thermo-chemistry of archaeological wood along with in-depth compositional data thanks to the use of MS. Our investigations not only highlighted wood degradation in terms of differences between carbohydrates and lignin content, but also showed that lignin oxidation and depolymerization took place in the archaeological wood. Mass spectral data revealed differences among the archaeological samples from the internal to the external part of the pile. An increase in the formation of wood pyrolysis products bearing a carbonyl group at the benzylic position and a decrease in the amount of lignin dimers were observed. These were related to oxidation and depolymerization reactions, respectively. Copyright (c) 2015 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available