4.5 Article

Hollow CoFe2O4-Co3Fe7 microspheres applied in electromagnetic absorption

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 377, Issue -, Pages 259-266

Publisher

ELSEVIER
DOI: 10.1016/j.jmmm.2014.10.118

Keywords

Cobalt ferrite; Alloy; Thermal reduction; Microwave absorption

Funding

  1. National Science Foundation of Shanxi [2012011005-1]

Ask authors/readers for more resources

In this work, monodisperse hollow cobalt ferrite (CoFe2O4) microspheres with mean diameter of 150 nm and shell thickness of 50 nm have been successfully prepared via a one-pot solvothermal method. In order to improve the microwave absorption, a thermal reduction process was designed to synthesize hollow CoFe2O4-Co3Fe7 microspheres. Scanning electron microscopy and transmission electron microscopy images showed that the CoFe2O4-Co3Fe7 microspheres retained hollow structure. Microwave absorption results revealed that hollow CoFe2O4-Co3Fe7 microspheres exhibited much stronger electromagnetic absorption than the original hollow CoFe2O4 microspheres. Most importantly, when the sample thickness was 1.3 mm, the reflection loss (RL) less than -10 dB was obtained in the frequency range of 12.5-17.7 GHz, which nearly covered the entire Ku-band. When the sample thickness increased to 2 mm, the minimum RL was as high as -41.6 dB with the effective bandwidth (the bandwidth of RL at -10 dB) of 3 GHz. The enhanced microwave absorption was attributed to efficient complement between dielectric loss and magnetic loss. These results indicated that the hollow CoFe2O4-Co3Fe7 microspheres could be used as a new candidate for microwave absorbents, especially in Ku-band. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available