4.7 Article

Interplatform Reproducibility of Liver and Spleen Stiffness Measured With MR Elastography

Journal

JOURNAL OF MAGNETIC RESONANCE IMAGING
Volume 43, Issue 5, Pages 1064-1072

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jmri.25077

Keywords

-

Funding

  1. National Institutes of Health (NIH) [1R01DK087877, EB001981]
  2. General Electric Healthcare grant
  3. Societe Francaise de Radiologie

Ask authors/readers for more resources

Purpose: To assess interplatform reproducibility of liver stiffness (LS) and spleen stiffness (SS) measured with magnetic resonance elastography (MRE) based on a 2D gradient echo (GRE) sequence. Materials and Methods: This prospective Health Insurance Portability and Accountability Act (HIPAA)-compliant and Institutional Review Board (IRB)-approved study involved 12 subjects (five healthy volunteers and seven patients with liver disease). A multislice 2D-GRE-based MRE sequence was performed using two systems from different vendors (3.0T GE and 1.5T Siemens) on the same day. Two independent observers measured LS and SS on confidence maps. Bland-Altman analysis (with coefficient of reproducibility, CR), coefficient of variability (CV), and intraclass correlation (ICC) were used to analyze interplatform, intra- and interobserver variability. Human data were validated using a gelatin-based phantom. Results: There was excellent reproducibility of phantom stiffness measurement (CV 4.4%). Mean LS values were 3.44-3.48 kPa and 3.62-3.63 kPa, and mean SS values were 7.54-7.91 kPa and 8.40-8.85 kPa at 3.0T and 1.5T for observers 1 and 2, respectively. The mean CVs between platforms were 9.2%-11.5% and 13.1%-14.4% for LS and SS, respectively, for observers 1 and 2. There was excellent interplatform reproducibility (ICC >0.88 and CR <36.2%) for both LS and SS, and excellent intra- and interobserver reproducibility (intraobserver: ICC >0.99, CV <2.1%, CR <6.6%; interobserver: ICC >0.97, CV and CR <16%). Conclusion: This study demonstrates that 2D-GRE MRE provides platform- and observer-independent LS and SS measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available