4.5 Review

Alternative splicing and retinal degeneration

Journal

CLINICAL GENETICS
Volume 84, Issue 2, Pages 142-149

Publisher

WILEY
DOI: 10.1111/cge.12181

Keywords

alternative splicing; retinal degeneration; retinitis pigmentosa; small molecules

Funding

  1. National Institutes of Health [T32GM007309, R01EY009769, P30EY001765]
  2. Foundation Fighting Blindness
  3. Research to Prevent Blindness, Inc.

Ask authors/readers for more resources

Alternative splicing is highly regulated in tissue-specific and development-specific patterns, and it has been estimated that 15% of disease-causing point mutations affect pre-mRNA splicing. In this review, we consider the cis-acting splice site and trans-acting splicing factor mutations that affect pre-mRNA splicing and contribute to retinal degeneration. Numerous splice site mutations have been identified in retinitis pigmentosa (RP) and various cone-rod dystrophies. Mutations in alternatively spliced retina-specific exons of the widely expressed RPGR and COL2A1 genes lead primarily to X-linked RP and ocular variants of Stickler syndrome, respectively. Furthermore, mutations in general pre-mRNA splicing factors, such as PRPF31, PRPF8, and PRPF3, predominantly cause autosomal dominant RP. These findings suggest an important role for pre-mRNA splicing in retinal homeostasis and the pathogenesis of retinal degenerative diseases. The development of novel therapeutic strategies to modulate aberrant splicing, including small molecule-based therapies, has the potential to lead to new treatments for retinal degenerative diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available