4.7 Article

Cell Lines as Candidate Reference Materials for Quality Control of ERBB2 Amplification and Expression Assays in Breast Cancer

Journal

CLINICAL CHEMISTRY
Volume 55, Issue 7, Pages 1307-1315

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1373/clinchem.2008.120576

Keywords

-

Funding

  1. Intramural NIH HHS [ZIC BC011138] Funding Source: Medline

Ask authors/readers for more resources

BACK(;ROUND: Human epidermal growth factor receptor 2 (HER2) is an important biomarker whose status plays a pivotal role in therapeutic decision-making for breast cancer patients and in determining their clinical outcomes. Ensuring the accuracy and reproducibility of HER2 assays by immunohistochemistry (IHC) and by fluorescence in situ hybridization (FISH) requires a reliable standard for monitoring assay sensitivity and specificity, and for assessing methodologic variation. A prior NIST workshop addressed this need by reaching a consensus to create cell lines as reference materials for HER2 testing. METHODS: Breast carcinoma cell lines SK-BR-3 and MCF-7 were characterized quantitatively by IHC with chicken anti-HER2 IgY antibody and by FISH with biotinylated bacterial artificial chromosome DNA probes; both assays used quantum dots as detectors. Formalin-fixed and paraffin-embedded (FFPE) cell blocks were prepared and tested for suitability as candidate reference materials by IHC and FISH with commercially available reagents. IHC and FISH results were also compared with those obtained by laser-scanning cytometry and real-time PCR, respectively. RESULTS: MCF-7 cells had typical numbers of gene copies and very low production of HER2 protein, whereas SK-BR-3 cells contained approximately 10-fold more copies of the gene and exhibited approximately 15-fold higher amounts of HER2 protein than MCF-7 cells. FFPE SK-BR-3 cells showed results similar to those for fresh SK-BR-3 cells. CONCLUSIONS: SK-BR-3 and MCF-7 are suitable as candidate reference materials in QC of HER2 testing. Coupled with the associated assay platforms, they provide valuable controls for quantitative measurement of HER2 amplification and production in breast cancer samples, irrespective of the antibody/probe or detector used. (C) 2009 American Association for Clinical Chemistry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available