4.7 Article

Lateral Flow Immunoassay Using Europium Chelate-Loaded Silica Nanoparticles as Labels

Journal

CLINICAL CHEMISTRY
Volume 55, Issue 1, Pages 179-182

Publisher

AMER ASSOC CLINICAL CHEMISTRY
DOI: 10.1373/clinchem.2008.114561

Keywords

-

Funding

  1. Xiamen Scientific Development Program [3502Z20055008]

Ask authors/readers for more resources

BACKGROUND: Despite their ease of use, lateral flow immunoassays (LFIAs) often suffer from poor quantitative discrimination and low analytical sensitivity. We explored the use of a novel class of europium chelate-loaded silica nanoparticles as labels to overcome these limitations. METHODS: Antibodies were covalently conjugated onto europium chelate-loaded silica nanoparticles with dextran as a linker. The resulting conjugates were used as labels in LFIA for detection of hepatitis B surface antigen (HBsAg). We performed quantification with a digital camera and Adobe Photoshop software. We also used 286 clinical samples to compare the proposed method with a quantitative ELISA. RESULTS: A detection limit of 0.03 mu g/L was achieved, which was 100 times lower than the colloidal gold-based LFIAs and lower than ELISA. A precise quantitative dose-response curve was obtained, and the linear measurement range was 0.05-3.13 mu g/L, within which the CVs were 2.3%-10.4%. Regression analysis of LFIA on ELISA results gave: log (LFIA) = -0.14 log (ELISA) + 1.03 mu g/L with r = 0.99 for the quantification of HBsAg in 35 positive serum samples. Complete agreement was observed for the qualitative comparison of 286 clinical samples assayed with LFIA and ELISA. CONCLUSIONS: Europium chelate-loaded silica nano-particle labels have great potential to improve LFIAs, making them useful not only for simple screening applications but also for more sensitive and quantitative immunoassays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available