4.7 Article

Use of proximity ligation to screen for inhibitors of interactions between vascular endothelial growth factor A and its receptors

Journal

CLINICAL CHEMISTRY
Volume 54, Issue 7, Pages 1218-1225

Publisher

AMER ASSOC CLINICAL CHEMISTRY
DOI: 10.1373/clinchem.2007.099424

Keywords

-

Funding

  1. NCI NIH HHS [CA 78038, P01 CA078038] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM035208, NIH GM35208] Funding Source: Medline

Ask authors/readers for more resources

BACKGROUND: Improved methods are required to screen drug candidates for their influences on protein interactions. There is also a compelling need for miniaturization of screening assays, with attendant reductions in reagent consumption and assay costs. METHODS: We used sensitive, miniaturized proximity ligation assays (PLAs) to monitor binding of vascular endothelial growth factor A (VEGF-A) to 2 of its receptors, VEGFR-1 and VEGFR-2. We measured the effects of proteins and low molecular weight compounds capable of disrupting these interactions and compared the results with those obtained by immunoblot analysis. We analyzed 6 different inhibitors: a DNA aptamer, a mixed DNA/ RNA aptamer, a monoclonal VEGF-A neutralizing antibody, a monoclonal antibody directed against VEGFR-2, a recombinant competitive protein, and a low molecular weight synthetic molecule. RESULTS: The PLAs were successful for monitoring the formation and inhibition of VEGF-A-receptor complexes, and the results correlated well with those obtained by measuring receptor phosphorylation. The total PLA time is just 3 hours, with minimal manual work and reagent additions. The method allows evaluation of the apparent affinity [half-maximal inhibitory concentration (IC(50))] from a dose-response curve. CONCLUSIONS: The PLA may offer significant advantages over conventional methods for screening the interactions of ligands with their receptors. The assay may prove useful for parallel analyses of large numbers of samples in the screening of inhibitor libraries for promising agents. The technique provides dose-response curves, allowing IC(50) values to be calculated. (C) 2008 American Association for Clinical Chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available