4.7 Article

LY2875358, a Neutralizing and Internalizing Anti-MET Bivalent Antibody, Inhibits HGF-Dependent and HGF-Independent MET Activation and Tumor Growth

Journal

CLINICAL CANCER RESEARCH
Volume 20, Issue 23, Pages 6059-6070

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-14-0543

Keywords

-

Categories

Funding

  1. Eli Lilly and Company

Ask authors/readers for more resources

Purpose: MET, the receptor for hepatocyte growth factor (HGF), has been implicated in driving tumor proliferation and metastasis. High MET expression is correlated with poor prognosis in multiple cancers. Activation of MET can be induced either by HGF-independent mechanisms such as gene amplification, specific genetic mutations, and transcriptional upregulation or by HGF-dependent autocrine or paracrine mechanisms. Experimental Design/Results: Here, we report on LY2875358, a novel humanized bivalent anti-MET antibody that has high neutralization and internalization activities, resulting in inhibition of both HGF-dependent and HGF-independent MET pathway activation and tumor growth. In contrast to other bivalent MET antibodies, LY2875358 exhibits no functional agonist activity and does not stimulate biologic activities such as cell proliferation, scattering, invasion, tubulogenesis, or apoptosis protection in various HGF-responsive cells and no evidence of inducing proliferation in vivo in a monkey toxicity study. LY2875358 blocks HGF binding to MET and HGF-induced MET phosphorylation and cell proliferation. In contrast to the humanized one-armed 5D5 anti-MET antibody, LY2875358 induces internalization and degradation of MET that inhibits cell proliferation and tumor growth in models where MET is constitutively activated. Moreover, LY2875358 has potent antitumor activity in both HGF-dependent and HGF-independent (MET-amplified) xenograft tumor models. Together, these findings indicate that the mechanism of action of LY2875358 is different from that of the one-armed MET antibody. Conclusions: LY2875358 may provide a promising therapeutic strategy for patients whose tumors are driven by both HGF-dependent and HGF-independent MET activation. LY2875358 is currently being investigated in multiple clinical studies. (C) 2014 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available