4.7 Article

Ultrasound Molecular Imaging in a Human CD276 Expression-Modulated Murine Ovarian Cancer Model

Journal

CLINICAL CANCER RESEARCH
Volume 20, Issue 5, Pages 1313-1322

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-13-1642

Keywords

-

Categories

Funding

  1. NIH [P50 CA083636]
  2. Marsha Rivkin Center for Ovarian Cancer Research Scholar Award
  3. Canary Foundation
  4. [R01 CA155289-01A1]

Ask authors/readers for more resources

Purpose: To develop a mouse ovarian cancer model that allows modulating the expression levels of human vascular targets in mouse xenograft tumors and to test whether expression of CD276 during tumor angiogenesis can be visualized by molecularly targeted ultrasound in vivo. Experimental Design: CD276-expressing MILE SVEN 1 (MS1) mouse endothelial cells were engineered and used for coinjection with 2008 human ovarian cancer cells for subcutaneous xenograft tumor induction in 15 nude mice. Fourteen control mice were injected with 2008 cells only. After confirming their binding specificity in flow chamber cell attachment studies, anti-CD276 antibody-functionalized contrast microbubbles were used for in vivo CD276-targeted contrast-enhanced ultrasound imaging. Results: CD276-targeted ultrasound imaging signal was significantly higher (P = 0.006) in mixed MS1/2008 tumors than in control tumors. Compared with control microbubbles, the ultrasound signal using CD276-targeted microbubbles was significantly higher (P = 0.002), and blocking with purified anti-CD276 antibody significantly decreased (P = 0.0096) the signal in mixed MS1/2008 tumors. Immunofluorescence analysis of the tumor tissue confirmed higher quantitative immunofluorescence signal in mixed MS1/2008 tumors than in control 2008 only tumors, but showed not significantly different (P = 0.54) microvessel density. Conclusions: Our novel small animal model allows for modulating the expression of human tumor-associated vascular endothelial imaging targets in a mouse host and these expression differences can be visualized noninvasively by ultrasound molecular imaging. The animal model can be applied to other human vascular targets and may facilitate the preclinical development of new imaging probes such as microbubbles targeted at human vascular markers not expressed in mice. (C) 2014 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available