4.7 Article

Smac Modulates Chemosensitivity in Head and Neck Cancer Cells through the Mitochondrial Apoptotic Pathway

Journal

CLINICAL CANCER RESEARCH
Volume 17, Issue 8, Pages 2361-2372

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-10-2262

Keywords

-

Categories

Funding

  1. NIH [CA129829, CA106348, CA121105]
  2. American Cancer Society [RGS-10-124-01-CCE, RSG-07-156-01-CNE]
  3. FAMRI

Ask authors/readers for more resources

Purpose: Overexpression of inhibitors of apoptosis proteins (IAP) contributes to therapeutic resistance. Second mitochondria-derived activator of caspase (Smac) promotes caspase activation by binding to IAPs upon release from the mitochondria. IAP antagonists, also called SMAC mimetics, are promising anticancer agents modeled after this mechanism. We investigated the role and mechanisms of Smac-and Smac mimetic-mediated chemosensitization in head and neck squamous cell carcinoma (HNSCC) cells. Experimental Design: The effects of SMAC knockdown, SMAC overexpression, and a small molecule Smac mimetic on the chemosensitivities of HNSCC cells were determined. The mechanisms of Smac-and Smac mimetic-mediated chemosensitization were investigated by analyzing growth suppression, the mitochondrial apoptotic pathway, caspase activation, and IAP proteins. The therapeutic responses of HNSCC cells with different levels of Smac were compared in xenograft models. Results: We found that Smac mediates apoptosis induced by several classes of therapeutic agents through the mitochondrial pathway. SMAC knockdown led to impaired caspase activation, mitochondrial membrane depolarization, and release of cytochrome c. A small molecule Smac mimetic, at nanomolar concentrations, significantly sensitized HNSCC cells to gemcitabine-induced apoptosis and restored gemcitabine sensitivity in SMAC knockdown cells, through caspase activation, X-linked IAP dissociation, and mitochondria-associated events, but not the TNF-alpha pathway. Furthermore, Smac levels modulated the therapeutic response of HNSCC cells to gemcitabine in xenograft models. Conclusions: Our results establish a critical role of Smac in mediating therapeutic responses of HNSCC cells and provide a strong rationale for combining Smac mimetics with other anticancer agents to treat HNSCC. Clin Cancer Res; 17(8); 2361-72. (C) 2011 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available