4.7 Article

Liposome-Encapsulated Curcumin Suppresses Growth of Head and Neck Squamous Cell Carcinoma In vitro and in Xenografts through the Inhibition of Nuclear Factor κB by an AKT-Independent Pathway

Journal

CLINICAL CANCER RESEARCH
Volume 14, Issue 19, Pages 6228-6236

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-07-5177

Keywords

-

Categories

Funding

  1. VA Greater Los Angeles Healthcare System
  2. West Los Angeles Surgical Education Research Center
  3. UCLA Academic Senate
  4. Veterans Administration, Washington, DC

Ask authors/readers for more resources

Purpose: The purpose of this study was to determine whether a liposomal formulation of curcumin would suppress the growth of head and neck squamous cell carcinoma (HNSCC) cell lines CAL27 and UM-SCC1 in vitro and in vivo. Experimental Design: HNSCC cell lines were treated with liposomal curcumin at different doses and assayed for in vitro growth suppression using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. A reporter gene assay was done on cell lines to study the effect of liposomal curcumin on nuclear factor kappa B (NF kappa B) activation. Western blot analysis was done to determine the effect of curcumin on the expression of NFKB, phospho-I kappa B alpha, phospho-AKT (pAKT), phospho-S6 kinase, cyclin D1, cyclooxygenase-2, matrix metalloproteinase-9, Bcl-2, Bcl-xL, Mcl-1L, and Mcl-1S. Xenograft mouse tumors were grown and treated with intravenous liposomal curcumin. After 5 weeks, tumors were harvested and weighed. Immunohistochemistry and Western blot analyses were used to study the effect of liposomal curcumin on the expression of NFKB and pAKT. Results: The addition of liposomal curcumin resulted in a dose-dependent growth suppression of both cell lines. Liposomal curcumin treatment suppressed the activation of NFKB without affecting the expression of pAKT or its downstream target phospho-S6 kinase. Expression of cyclin D1, cyclooxygenase-2, matrix metalloproteinase-9, Bcl-2, Bcl-xL, Mcl-1L, and Mcl-1S were reduced, indicating the effect of curcumin on the NFKB pathway. Nude mice xenograft tumors were suppressed after 3.5 weeks of treatment with i.v. liposomal curcumin, and there was no demonstrable toxicity of liposomal curcumin upon autopsy. Immunohistochemistry and Western blot analysis on xenograft tumors showed the inhibition of NFKB without affecting the expression of pAKT. Conclusions: Liposomal curcumin suppresses HNSCC growth in vitro and in vivo. The results suggest that liposomal curcumin is a viable nontoxic therapeutic agent for HNSCC that may work via an AKT-independent pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available