4.3 Review

Targeting metabolic inflammation in Parkinson's disease: Implications for prospective therapeutic strategies

Journal

Publisher

WILEY
DOI: 10.1111/j.1440-1681.2011.05650.x

Keywords

insulin-like growth factor-1; interleukin-1 ss; metabolic inflammation; nuclear factor-?B; Parkinson's disease; tumour necrosis factor-a

Funding

  1. National Key Program of Basic Research of China [2009CB521906, 2011CB504103]
  2. National Natural Science Foundation of China [81030060]

Ask authors/readers for more resources

1. Parkinsons disease (PD) is one of the most common neurodegenerative disorders and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the aetiology of PD has not been clarified as yet, it is believed that ageing, diet, diabetes and adiposity are associated with PD. 2. Type 2 diabetes and lipid abnormalities share multiple common pathophysiological mechanisms with PD. In particular, inflammation plays a critical role in the destruction of both pancreatic islet beta-cells and dopaminergic neurons in the substantia nigra. Emerging evidence indicates that dysfunctions of energy metabolism evoke metabolic inflammation, which differs to the narrow concept of inflammation, participating in systemic pathological processes such as neurodegenerative disease and diabetes. 3. The brain is considered an immunologically privileged organ, free from immune reactions, because it is protected by the bloodbrain barrier (BBB). However, studies have shown that there is gradual impairment of neurovascular function with ageing and in neurodegenerative disorders, resulting in abnormal states, including increased BBB permeability. Consequently, harmful elements that would not normally be able to cross the BBB, such as pro-inflammatory factors, reactive oxygen species and neurotoxins, infiltrate into the brain, triggering neural injury. 4. Currently, the drugs available for the treatment of PD only ameliorate the symptoms of the disease. Therapeutic strategies aimed at stopping or modifying disease progression are still being sought. Most recent studies suggest that both central and peripheral inflammation may be dysregulated in PD. Therefore, therapeutic strategies aimed at modulating systemic inflammatory reactions or energy metabolism may represent a goal in neuroprotection in PD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available