4.7 Article

Functional importance of apolipoprotein A5 185G in the activation of lipoprotein lipase

Journal

CLINICA CHIMICA ACTA
Volume 413, Issue 1-2, Pages 246-250

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cca.2011.09.045

Keywords

Apolipoprotein A5; Triglyceride; Mutagenesis; Lipoprotein lipase; Mutant

Funding

  1. National Science Council of Taiwan [NSC 96-2320-B-002-038-MY3, NSC 98-2320-B-002-019-MY3]

Ask authors/readers for more resources

Background: Apolipoprotein A5 (APOA5) over-expression enhances lipolysis of triglyceride (TG) through stimulation of lipoprotein lipase (LPL) activity; however, an APOA5 G185C variant was found associated with hypertriglyceridemia. The aim of this study was, therefore, to explore the importance of APOA5 185GG in the activation of LPL Methods: A fragment containing mature human APOA5 cDNA was obtained by RT-PCR and subcloned into pET-15b vector. Site-directed mutagenesis was performed to generate 19 variants. Recombinant human APOA5 wild type and variants were produced in Escherichia coli, and then activation of LPL was measured. Results: Activity of APOA5 variants on LPL-mediated 1,2-dimyristoyl-sn-glycero-3-phosphocholine hydrolysis was reduced by 17 to 74% in comparison to wild type APOA5 (P<0.0001). All variants also showed reduced activation (P<0.0001) of LPL-mediated hydrolysis of very low-density lipoprotein (VLDL); activation abilities of APOA5 variants ranged from 31 to 81% of wild-type APOA5. Conclusions: APOA5 residue 185G is very important in LPL-mediated VLDL hydrolysis, and any mutation at this residue will decrease LPL activation and concomitant TG modulation. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available