4.6 Article

The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales

Journal

CLIMATE DYNAMICS
Volume 55, Issue 1-2, Pages 131-151

Publisher

SPRINGER
DOI: 10.1007/s00382-018-4368-z

Keywords

Convection permitting model; Precipitation characteristics; Diurnal cycle; Moisture budget diagnosis; Water vapor transport

Ask authors/readers for more resources

A limited area convection permitting model (CPM) based on the Met Office Unified Model, with a 0.04 degrees (4.4 km) horizontal grid spacing, is used to simulate an entire warm-season of the East Asian monsoon (from April to September 2009). The simulations are compared to rain gauge observations, reanalysis and to a lower resolution regional model with a 0.12 degrees (13.2 km) grid spacing that has a parametrization of subgrid-scale convective clouds and precipitation. The 13.2 km simulation underestimates precipitation intensity, produces rainfall too frequently, and shows evident biases in reproducing the diurnal cycle of precipitation and low-level wind fields. In comparison, the CPM shows significant improvements in the spatial distribution of precipitation intensity, although it overestimates the intensity magnitude and has a wet bias over central eastern China. The diurnal cycle of precipitation over Mei-yu region, southern China and the eastern periphery of the Tibetan Plateau, as well as the diurnal cycle of low-level winds over both the Mei-yu region and southern China are better simulated by the CPM. Over the Mei-yu region, in both simulations and observations, the local atmospheric instability in the afternoon is favorable for upward motion and rainfall. The CPM receives more sensible heat flux from the surface, has a stronger upward motion, and overestimates water vapor convergence based on moisture budget diagnosis. All these processes help explain the excessive late afternoon rainfall over the Mei-yu region in the CPM simulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available