4.6 Article

Impact of climate sensitivity and polar amplification on projections of Greenland Ice Sheet loss

Journal

CLIMATE DYNAMICS
Volume 43, Issue 7-8, Pages 2249-2260

Publisher

SPRINGER
DOI: 10.1007/s00382-014-2050-7

Keywords

Climate sensitivity; Polar amplification; Greenland Ice Sheet

Funding

  1. Victoria University of Wellington
  2. New Zealand government ANZICE program
  3. U.S. Department of Energy Office of Science

Ask authors/readers for more resources

The future rate of Greenland Ice Sheet (GrIS) deglaciation and the future contribution of GrIS deglaciation to sea level rise will depend critically on the magnitude of northern hemispheric polar amplification and global equilibrium climate sensitivity. Here, these relationships are analyzed using an ensemble of multi-century coupled ice-sheet/climate model simulations seeded with observationally-constrained initial conditions and then integrated forward under tripled preindustrial CO2. Polar amplifications and climate sensitivities were varied between ensemble members in order to bracket current uncertainty in polar amplification and climate sensitivity. A large inter-ensemble spread in mean GrIS air temperature, albedo and surface mass balance trends stemming from this uncertainty resulted in GrIS ice volume loss ranging from 5 to 40 % of the original ice volume after 500 years. The large dependence of GrIS deglaciation on polar amplification and climate sensitivity that we find indicates that the representation of these processes in climate models will exert a strong control on any simulated predictions of multi-century GrIS evolution. Efforts to reduce polar amplification and equilibrium climate sensitivity uncertainty will therefore play a critical role in constraining projections of GrIS deglaciation and sea level rise in a future high-CO2 world.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available