4.6 Article

Large scale features and energetics of the hybrid subtropical low 'Duck' over the Tasman Sea

Journal

CLIMATE DYNAMICS
Volume 42, Issue 1-2, Pages 453-466

Publisher

SPRINGER
DOI: 10.1007/s00382-013-1688-x

Keywords

Mid-latitude storms; Cyclones; Lorenz energetics; Blocking; Polar lows

Funding

  1. Australian Research Council

Ask authors/readers for more resources

New aspects of the genesis and partial tropical transition of a rare hybrid subtropical cyclone on the eastern Australian coast are presented. The 'Duck' (March 2001) attracted more recent attention due to its underlying genesis mechanisms being remarkably similar to the first South Atlantic hurricane (March 2004). Here we put this cyclone in climate perspective, showing that it belongs to a class within the 1 % lowest frequency percentile in the Southern Hemisphere as a function of its thermal evolution. A large scale analysis reveals a combined influence from an existing tropical cyclone and a persistent mid-latitude block. A Lagrangian tracer showed that the upper level air parcels arriving at the cyclone's center had been modified by the blocking. Lorenz energetics is used to identify connections with both tropical and extratropical processes, and reveal how these create the large scale environment conducive to the development of the vortex. The results reveal that the blocking exerted the most important influence, with a strong peak in barotropic generation of kinetic energy over a large area traversed by the air parcels just before genesis. A secondary peak also coincided with the first time the cyclone developed an upper level warm core, but with insufficient amplitude to allow for a full tropical transition. The applications of this technique are numerous and promising, particularly on the use of global climate models to infer changes in environmental parameters associated with severe storms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available