4.6 Article

Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling

Journal

CLIMATE DYNAMICS
Volume 40, Issue 3-4, Pages 839-856

Publisher

SPRINGER
DOI: 10.1007/s00382-012-1337-9

Keywords

Climate change; Regional climate modeling; Dynamical downscaling; Statistical downscaling

Funding

  1. public interest energy research (PIER) program of the California Energy Commission (CEC) [500-07-042]
  2. International ad-hoc Detection and Attribution (IDAG) project from the US Department of Energy's Office of Science, Office of Biological and Environmental Research [DE-SC0004956]
  3. National Oceanic and Atmospheric Administration's Climate Program Office
  4. Department of Energy [DE-SC0002000]
  5. CALFED Bay-Delta Program
  6. Grants-in-Aid for Scientific Research [23686071] Funding Source: KAKEN

Ask authors/readers for more resources

Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate variability is roughly of similar magnitude to the projected T changes. In the monthly average, July temperatures shift enough that that the hottest July found in any simulation over the historical period becomes a modestly cool July in the future period. Januarys as cold as any found in the historical period are still found in the 2060s, but the median and maximum monthly average temperatures increase notably. Annual and seasonal P changes are small compared to interannual or intermodel variability. However, the annual change is composed of seasonally varying changes that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly wetter conditions in the North of the state, while spring and autumn show less precipitation. The dynamical downscaling techniques project increasing precipitation in the Southeastern part of the state, which is influenced by the North American monsoon, a feature that is not captured by the statistical downscaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available