4.6 Article

Climate links and recent extremes in antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO

Journal

CLIMATE DYNAMICS
Volume 38, Issue 1-2, Pages 57-73

Publisher

SPRINGER
DOI: 10.1007/s00382-011-1044-y

Keywords

Sea ice; Antarctica; Southern Annular Mode; El Nino; Mid-latitude storms; Cyclones

Funding

  1. Australian Research Council
  2. Antarctic Science Advisory Committee

Ask authors/readers for more resources

In this article, we study the climate link between the Southern Annular Mode (SAM) and the southern sea-ice extent (SIE), and discuss the possible role of stationary waves and synoptic eddies in establishing this link. In doing so, we have used a combination of techniques involving spatial correlations of SIE, eddy streamfunction and wind anomalies, and statistics of high-latitude cyclone strength. It is suggested that stationary waves may be amplified by eddy anomalies associated with high latitude cyclones, resulting in more sea ice when the SAM is in its positive phase for most, but not all, longitudes. A similar association is observed during ENSO (La Nia years). Although this synergy in the SAM/ENSO response may partially reflect preferential areas for wave amplification around Antarctica, the short extent of the climate records does not allow for a definite causality connection to be established with SIE. Stronger polar cyclones are observed over the areas where the stationary waves are amplified. These deeper cyclones will break up and export ice equatorward more efficiently, but the near-coastal regions are cold enough to allow for a rapid re-freeze of the resulting ice break-up. We speculate that if global warming continues this same effect could help reverse the current (positive) Antarctic SIE trends once the ice gets thinner, similarly to what has been observed in the Northern Hemisphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available