4.4 Article

INVESTIGATION OF THE THERMAL DECOMPOSITION OF TALC

Journal

CLAYS AND CLAY MINERALS
Volume 62, Issue 1-2, Pages 137-144

Publisher

CLAY MINERALS SOC
DOI: 10.1346/CCMN.2014.0620206

Keywords

Activation Energy; Coats-Redfern; Thermal Decomposition; Talc

Funding

  1. National Twelfth Five-year Science and Technology Support Program [2012BAB10B00]
  2. China Scholarship Council (CSC)

Ask authors/readers for more resources

Different changes in the structural and thermal properties of various types of talc have been reported in the literature which have made comparison of analytical results difficult. The objective of the present study was to obtain some fundamental insights into the effects of the thermal behavior of talc and to carry out kinetic analyses of the decomposition of talc under high temperature. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetry-differential scanning calorimetry (TG-DSC) were used to study the thermal decomposition mechanism. The Coats-Redfern decomposition model was used to determine the decomposition mechanism of talc samples. The results showed that the decomposition of talc commenced at similar to 800 degrees C, peaking at similar to 895 degrees C, with the formation of enstatite and amorphous silica. An isothermal treatment at 1000 degrees C caused the complete dehydroxylation of talc. The XRD and FTIR results indicated that the enstatite and amorphous silica phases were transformed into clinoenstatite and paracrystalline opal phases, respectively, after the decomposition stage at 1200 degrees C. Good linearity in the Coats-Redfern model was observed from room temperature to 1300 degrees C and the activation energy was calculated to be 69 kcal/mol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available