4.4 Article

THE EFFECT OF ANTIMONATE, ARSENATE, AND PHOSPHATE ON THE TRANSFORMATION OF FERRIHYDRITE TO GOETHITE, HEMATITE, FEROXYHYTE, AND TRIPUHYITE

Journal

CLAYS AND CLAY MINERALS
Volume 61, Issue 1-2, Pages 11-25

Publisher

SPRINGER
DOI: 10.1346/CCMN.2013.0610102

Keywords

Antimony; Arsenic; Ferrihydrite; Feroxyhyte; Goethite; Hematite; Iron Oxides; Phosphorous; Transformation; Tripuhyite

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) Research Training Group [GRK 1257/1]

Ask authors/readers for more resources

Iron oxides, typical constituents of many soils, represent a natural immobilization mechanism for toxic elements. Most iron oxides are formed during the transformation of poorly crystalline ferrihydrite to more crystalline iron phases. The present study examined the impact of well known contaminants, such as P(V), As(V), and Sb(V), on the ferrihydrite transformation and investigated the transformation products with a set of bulk and nano-resolution methods. Irrespective of the pH, P(V) and As(V) favor the formation of hematite (alpha-Fe2O3) over goethite (alpha-FeOOH) and retard these transformations at high concentrations. Sb(V), on the other hand, favors the formation of goethite, feroxyhyte (delta'-FeOOH), and tripuhyite (FeSbO4) depending on pH and Sb(V) concentration. The elemental composition of the transformation products analyzed by inductively coupled plasma optical emission spectroscopy show high loadings of Sb(V) with molar Sb:Fe ratios of 0.12, whereas the molar P:Fe and As:Fe ratios do not exceed 0.03 and 0.06, respectively. The structural similarity of feroxyhyte and hematite was resolved by detailed electron diffraction studies, and feroxyhyte was positively identified in a number of the samples examined. These results indicate that, compared to P(V) and As(V), Sb(V) can be incorporated into the structure of certain iron oxides through Fe(III)-Sb(V) substitution, coupled with other substitutions. However, the outcome of the ferrihydrite transformation (hematite, goethite, feroxyhyte, or tripuhyite) depends on the Sb(V) concentration, pH, and temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available