4.4 Article

A new approach for modeling of magnetorheological elastomers

Journal

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X15615966

Keywords

magnetorheological elastomer; modeling; viscoelastic; Kelvin-Voigt model

Ask authors/readers for more resources

This article presents a novel model to portray the behavior of magnetorheological elastomer in oscillatory shear test. The dynamic behavior of an isotropic magnetorheological elastomer is experimentally investigated at different input conditions. A modified Kelvin-Voigt viscoelastic model is developed to describe relationships between shear stress and shear strain of magnetorheological elastomers based on input frequency, shear strain, and magnetic flux density. Unlike the previous models of magnetorheological elastomers, the coefficients of this model, calculated by nonlinear regression method, are constant at various harmonic shear loads and different magnetic flux densities. The results show that the new phenomenological model can effectively predict the viscoelastic behavior of magnetorheological elastomers. Also, the results demonstrate that the trend of shear storage modulus of magnetorheological elastomer based on the frequency is nonlinear from 0.1 to 8Hz, which is predicted by the present model. The proposed model is beneficial to simulate vibration control strategies in magnetorheological elastomer base devices under harmonic shear loadings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available