4.4 Article

AdS flowing black funnels: stationary AdS black holes with non-Killing horizons and heat transport in the dual CFT

Journal

CLASSICAL AND QUANTUM GRAVITY
Volume 30, Issue 7, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0264-9381/30/7/075001

Keywords

-

Funding

  1. National Science Foundation [PHY11-25915, PHY08-55415]
  2. University of California
  3. Direct For Mathematical & Physical Scien
  4. Division Of Physics [1205500] Funding Source: National Science Foundation

Ask authors/readers for more resources

We construct stationary non-equilibrium black funnels locally asymptotic to global AdS(4) in vacuum Einstein-Hilbert gravity with a negative cosmological constant. These are non-compactly-generated black holes in which a single connected bulk horizon extends to meet the conformal boundary. Thus the induced (conformal) boundary metric has smooth horizons as well. In our examples, the boundary spacetime contains a pair of black holes connected through the bulk by a tubular bulk horizon. Taking one boundary black hole to be hotter than the other (Delta T not equal 0) prohibits equilibrium. The result is a so-called flowing funnel, a stationary bulk black hole with a non-Killing horizon that may be said to transport heat toward the cooler boundary black hole. While generators of the bulk future horizon evolve toward zero expansion in the far future, they begin at finite affine parameter with infinite expansion on a singular past horizon characterized by power-law divergences with universal exponents. We explore both the horizon generators and the boundary stress tensor in detail. While most of our results are numerical, a semi-analytic fluid/gravity description can be obtained by passing to a one-parameter generalization of the above boundary conditions. The new parameter detunes the temperatures T-bulk BH and T-bndy BH of the bulk and boundary black holes, and we may then take alpha = T-bndy BH/T-bulk BH and Delta T small to control the accuracy of the fluid-gravity approximation. In the small alpha, Delta T regime, we find excellent agreement with our numerical solutions. For our cases the agreement also remains quite good even for alpha similar to 0.8. In terms of a dual CFT, our alpha = 1 solutions describe heat transport via a large N version of Hawking radiation through a deconfined plasma that couples efficiently to both boundary black holes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available