4.4 Article

Beyond Einstein-Cartan gravity: quadratic torsion and curvature invariants with even and odd parity including all boundary terms

Journal

CLASSICAL AND QUANTUM GRAVITY
Volume 28, Issue 21, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/0264-9381/28/21/215017

Keywords

-

Ask authors/readers for more resources

Recently, gravitational gauge theories with torsion have been discussed by an increasing number of authors from a classical as well as from a quantum field theoretical point of view. The Einstein-Cartan(-Sciama-Kibble) Lagrangian has been enriched by the parity odd pseudoscalar curvature (Hojman, Mukku and Sayed) and by torsion square and curvature square pieces, likewise of even and odd parity. (i) We show that the inverse of the so-called Barbero-Immirzi parameter multiplying the pseudoscalar curvature, because of the topological Nieh-Yan form, can be appropriately discussed if torsion square pieces are included. (ii) The quadratic gauge Lagrangian with both parities, proposed by Obukhov et al and Baekler et al, emerges also in the framework of Diakonov et al. We establish the exact relations between both approaches by applying the topological Euler and Pontryagin forms in a Riemann-Cartan space expressed for the first time in terms of irreducible pieces of the curvature tensor. (iii) In a Riemann-Cartan spacetime, that is, in a spacetime with torsion, parity-violating terms can be brought into the gravitational Lagrangian in a straightforward and natural way. Accordingly, Riemann-Cartan spacetime is a natural habitat for chiral fermionic matter fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available