4.4 Article

Observational testability of a Kerr bound in the x-ray spectrum of black hole candidates

Journal

CLASSICAL AND QUANTUM GRAVITY
Volume 27, Issue 7, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0264-9381/27/7/075003

Keywords

-

Ask authors/readers for more resources

The specific angular momentum of a Kerr black hole must not be larger than its mass. The observational confirmation of this bound which we call a Kerr bound directly suggests the existence of a black hole. In order to investigate observational testability of this bound by using the x-ray energy spectrum of black hole candidates, we calculate energy spectra for a super-spinning object ( or a naked singularity) which is described by a Kerr metric but whose specific angular momentum is larger than its mass, and then compare the spectra of this object with those of a black hole. We assume an optically thick and geometrically thin disk around the super-spinning object and calculate its thermal energy spectrum seen by a distant observer by solving general relativistic radiative transfer equations including usual special and general relativistic effects, such as Doppler boosting, gravitational redshift, light bending and frame-dragging. Surprisingly, for a given black hole, we can always find its super-spinning counterpart with its spin a(*) in the range 5/3 < a(*) < 8 root 6/3 whose observed spectrum is very similar to and practically indistinguishable from that of the black hole. As a result, we conclude that to confirm the Kerr bound we need more than the x-ray thermal spectrum of the black hole candidates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available