4.4 Article

Spacetimes characterized by their scalar curvature invariants

Journal

CLASSICAL AND QUANTUM GRAVITY
Volume 26, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0264-9381/26/2/025013

Keywords

-

Ask authors/readers for more resources

In this paper, we determine the class of four-dimensional Lorentzian manifolds that can be completely characterized by the scalar polynomial curvature invariants constructed from the Riemann tensor and its covariant derivatives. We introduce the notion of an I-non-degenerate spacetime metric, which implies that the spacetime metric is locally determined by its curvature invariants. By determining an appropriate set of projection operators from the Riemann tensor and its covariant derivatives, we are able to prove a number of results (both in the algebraically general and in algebraically special cases) of when a spacetime metric is I-non-degenerate. This enables us to prove our main theorem that a spacetime metric is either I-non-degenerate or a Kundt metric. Therefore, a metric that is not characterized by its curvature invariants must be of degenerate Kundt form. We then discuss the inverse question of what properties of the underlying spacetime can be determined from a given a set of scalar polynomial invariants, and some partial results are presented. We also discuss the notions of strong and weak non-degeneracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available