4.4 Article

A burst search for gravitational waves from binary black holes

Journal

CLASSICAL AND QUANTUM GRAVITY
Volume 26, Issue 20, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0264-9381/26/20/204004

Keywords

-

Funding

  1. National Science Foundation [PHY-0555453, PHY-0653057]
  2. LIGO [P0900062]

Ask authors/readers for more resources

Compact binary coalescence (CBC) is one of the most promising sources of gravitational waves. These sources are usually searched for with matched filters which require accurate calculation of the GW waveforms and generation of large template banks. We present a complementary search technique based on algorithms used in un-modeled searches. Initially designed for detection of un-modeled bursts, which can span a very large set of waveform morphologies, the search algorithm presented here is constrained for targeted detection of the smaller subset of CBC signals. The constraint is based on the assumption of elliptical polarization for signals received at the detector. We expect that the algorithm is sensitive to CBC signals in a wide range of masses, mass ratios and spin parameters. In preparation for the analysis of data from the fifth LIGO-Virgo science run (S5), we performed preliminary studies of the algorithm on test data. We present the sensitivity of the search to different types of simulated binary black hole waveforms. Also, we discuss how to extend the results of the test run into a search over all of the current LIGO-Virgo data set.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available