4.4 Article

Transition rate of the Unruh-DeWitt detector in curved spacetime

Journal

CLASSICAL AND QUANTUM GRAVITY
Volume 25, Issue 5, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0264-9381/25/5/055012

Keywords

-

Ask authors/readers for more resources

We examine the Unruh-DeWitt particle detector coupled to a scalar field in an arbitrary Hadamard state in four-dimensional curved spacetime. Using smooth switching functions to turn on and off the interaction, we obtain a regulator-free integral formula for the total excitation probability, and we show that an instantaneous transition rate can be recovered in a suitable limit. Previous results in Minkowski space are recovered as a special case. As applications, we consider an inertial detector in the Rindler vacuum and a detector at rest in a static Newtonian gravitational field. Gravitational corrections to decay rates in atomic physics laboratory experiments on the surface of the Earth are estimated to be suppressed by 42 orders of magnitude.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available