3.8 Article

Truncating Plakophilin-2 Mutations in Arrhythmogenic Cardiomyopathy Are Associated With Protein Haploinsufficiency in Both Myocardium and Epidermis

Journal

CIRCULATION-CARDIOVASCULAR GENETICS
Volume 7, Issue 3, Pages 230-240

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCGENETICS.113.000338

Keywords

arrhythmogenic right ventricular dysplasia; genetics; keratinocytes; plakophilins; proteomics

Funding

  1. Central Denmark Region Research Foundation in Denmark
  2. Lundbeck Foundation in Denmark
  3. Faculty of Health Sciences, Aarhus University in Denmark
  4. Arvid Nilsson's Foundation in Denmark
  5. Helga and Peter Korning's Foundation in Denmark
  6. Torben & Alice Frimodt's Foundation in Denmark
  7. John and Birthe Meyer Foundation in Denmark
  8. Karen Elise Jensen's Foundation in Denmark
  9. Bonnelycke's Foundation in Denmark
  10. Research Grant at Sygehus Vendsyssel in Denmark
  11. INHERITANCE project (Integrated Heart Research In Translational Genetics of Cardiomyopathies in Europe)
  12. European Commission [291924]

Ask authors/readers for more resources

Background-Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac condition associated with ventricular arrhythmias, heart failure, and sudden death. The disease is most often caused by mutations in the desmosomal gene for plakophilin-2 (PKP2), which is expressed in both myocardial and epidermal tissue. This study aimed to investigate protein expression in myocardial tissue of patients with AC carrying PKP2 mutations and elucidate whether keratinocytes of the same individuals exhibited a similar pattern of protein expression. Methods and Results-Direct sequencing of 5 AC genes in 71 unrelated patients with AC identified 10 different PKP2 mutations in 12 index patients. One patient, heterozygous for a PKP2 nonsense mutation, developed severe heart failure and underwent cardiac transplantation. Western blotting and immunohistochemistry of the explanted heart showed a significant decrease in PKP2 protein expression without detectable amounts of truncated PKP2 protein. Cultured keratinocytes of the patient showed a similar reduction in PKP2 protein expression. Nine additional PKP2 mutations were investigated in both cultured keratinocytes and endomyocardial biopsies from affected individuals. It was evident that PKP2 mutations introducing a premature termination codon in the reading frame were associated with PKP2 transcript and protein levels reduced to approximate to 50%, whereas a missense variant did not seem to affect the amount of PKP2 protein. Conclusions-The results of this study showed that truncating PKP2 mutations in AC are associated with low expression of the mutant allele and that the myocardial protein expression of PKP2 is mirrored in keratinocytes. These findings indicate that PKP2 haploinsufficiency contributes to pathogenesis in AC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available