4.7 Article

OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase

Journal

CIRCULATION RESEARCH
Volume 115, Issue 4, Pages 450-459

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.115.304262

Keywords

arginase; atherosclerosis; mitochondria; mitochondrial processing peptidase; nitric oxide synthase type III; oxidized low density lipoprotein

Funding

  1. American Heart Association [13POST16810011]
  2. National Heart, Lung, and Blood Institute [HL089668]
  3. NSF [MCB-0923661]
  4. Clinical Translational Science Award at Johns Hopkins University
  5. National Institutes of Health [S10RR024550]

Ask authors/readers for more resources

Rationale: Increased arginase activity contributes to endothelial dysfunction by competition for L-arginine substrate and reciprocal regulation of nitric oxide synthase (NOS). The rapid increase in arginase activity in human aortic endothelial cells exposed to oxidized low-density lipoprotein (OxLDL) is consistent with post-translational modification or subcellular trafficking. Objective: To test the hypotheses that OxLDL triggers reverse translocation of mitochondrial arginase 2 (Arg2) to cytosol and Arg2 activation, and that this process is dependent on mitochondrial processing peptidase, lectin-like OxLDL receptor-1 receptor, and rho kinase. Methods and Results: OxLDL-triggered translocation of Arg2 from mitochondria to cytosol in human aortic endothelial cells and in murine aortic intima with a concomitant rise in arginase activity. All of these changes were abolished by inhibition of mitochondrial processing peptidase or by its siRNA-mediated knockdown. Rho kinase inhibition and the absence of the lectin-like OxLDL receptor-1 in knockout mice also ablated translocation. Aminoterminal sequencing of Arg2 revealed 2 candidate mitochondrial targeting sequences, and deletion of either of these confined Arg2 to the cytoplasm. Inhibitors of mitochondrial processing peptidase or lectin-like OxLDL receptor-1 knockout attenuated OxLDL-mediated decrements in endothelial-specific NO production and increases in superoxide generation. Finally, Arg2(-/-) mice bred on an ApoE(-/-) background showed reduced plaque load, reduced reactive oxygen species production, enhanced NO, and improved endothelial function when compared with ApoE(-/-) controls. Conclusions: These data demonstrate dual distribution of Arg2, a protein with an unambiguous mitochondrial targeting sequence, in mammalian cells, and its reverse translocation to cytoplasm by alterations in the extracellular milieu. This novel molecular mechanism drives OxLDL-mediated arginase activation, endothelial NOS uncoupling, endothelial dysfunction, and atherogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available