4.7 Article

Cardiac Myocyte Z-Line Calmodulin Is Mainly RyR2-Bound, and Reduction Is Arrhythmogenic and Occurs in Heart Failure

Journal

CIRCULATION RESEARCH
Volume 114, Issue 2, Pages 295-306

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.114.302857

Keywords

arrhythmias; cardiac; fluorescence resonance energy transfer; heart failure; ryanodine receptor calcium release channel

Funding

  1. National Institutes of Health grants [R01-HL092097, P01-HL080101, R01HL073051]
  2. Banyu Life Science Foundation International

Ask authors/readers for more resources

Rationale: Calmodulin (CaM) associates with cardiac ryanodine receptor type-2 (RyR2) as an important regulator. Defective CaM-RyR2 interaction may occur in heart failure, cardiac hypertrophy, and catecholaminergic polymorphic ventricular tachycardia. However, the in situ binding properties for CaM-RyR2 are unknown. Objective: We sought to measure the in situ binding affinity and kinetics for CaM-RyR2 in normal and heart failure ventricular myocytes, estimate the percentage of Z-line-localized CaM that is RyR2-bound, and test cellular function of defective CaM-RyR2 interaction. Methods and Results: Using fluorescence resonance energy transfer in permeabilized myocytes, we specifically resolved RyR2-bound CaM from other potential binding targets and measured CaM-RyR2 binding affinity in situ (K-d=10-20 nmol/L). Using RyR2(ADA/+) knock-in mice, in which half of the CaM-RyR2 binding is suppressed, we estimated that >90% of Z-line CaM is RyR2-bound. Functional tests indicated a higher propensity for Ca2+ wave production and stress-induced ventricular arrhythmia in RyR2(ADA/+) mice. In a post-myocardial infarction rat heart failure model, we detected a decrease in the CaM-RyR2 binding affinity (K-d approximate to 51 nmol/L; approximate to 3-fold increase) and unaltered RyR2 affinity for the FK506-binding protein FKBP12.6 (Kd similar to 0.8 nmol/L). Conclusions: CaM binds to RyR2 with high affinity in cardiac myocytes. Physiologically, CaM is bound to >70% of RyR2 monomers and inhibits sarcoplasmic reticulum Ca2+ release. RyR2 is the major binding site for CaM along the Z-line in cardiomyocytes, and dissociating CaM from RyR2 can cause severe ventricular arrhythmia. In heart failure, RyR2 shows decreased CaM affinity, but unaltered FKBP 12.6 affinity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available