4.7 Article

GRK5-Mediated Exacerbation of Pathological Cardiac Hypertrophy Involves Facilitation of Nuclear NFAT Activity

Journal

CIRCULATION RESEARCH
Volume 115, Issue 12, Pages 976-U128

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.116.304475

Keywords

G protein-coupled receptor kinase; heart failure; nuclear factor of activated T cells

Funding

  1. National Institute of Health (NIH) [P01 HL091799, R37 HL061690, R01 HL085503, P01 HL075443, P01 HL108806, R01 HL105414]
  2. Great Rivers Affiliate of the American Heart Association
  3. Post-Doctoral Fellowship from the Great Rivers Affiliate of the American Heart Association

Ask authors/readers for more resources

Rationale: G protein-coupled receptor kinases (GRKs) acting in the cardiomyocyte regulate important signaling events that control cardiac function. Both GRK2 and GRK5, the predominant GRKs expressed in the heart, have been shown to be upregulated in failing human myocardium. Although the canonical role of GRKs is to desensitize G protein-coupled receptors via phosphorylation, it has been demonstrated that GRK5, unlike GRK2, can reside in the nucleus of myocytes and exert G protein-coupled receptor-independent effects that promote maladaptive cardiac hypertrophy and heart failure. Objective: To explore novel mechanisms by which GRK5 acting in the nucleus of cardiomyocytes participates in pathological cardiac hypertrophy. Methods and Results: In this study, we have found that GRK5-mediated pathological cardiac hypertrophy involves the activation of the nuclear factor of activated T cells (NFAT) because GRK5 causes enhancement of NFAT-mediated hypertrophic gene transcription. Transgenic mice with cardiomyocyte-specific GRK5 overexpression activate an NFAT-reporter in mice basally and after hypertrophic stimulation, including transverse aortic constriction and phenylephrine treatment. Complimentary to this, GRK5 null mice exhibit less NFAT transcriptional activity after transverse aortic constriction. Furthermore, the loss of NFATc3 expression in the heart protected GRK5 overexpressing transgenic mice from the exaggerated hypertrophy and early progression to heart failure seen after transverse aortic constriction. Molecular studies suggest that GRK5 acts in concert with NFAT to increase hypertrophic gene transcription in the nucleus via GRK5's ability to bind DNA directly without a phosphorylation event. Conclusions: GRK5, acting in a kinase independent manner, is a facilitator of NFAT activity and part of a DNA-binding complex responsible for pathological hypertrophic gene transcription.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available