4.7 Article

Differential Roles of GSK-3β During Myocardial Ischemia and Ischemia/Reperfusion

Journal

CIRCULATION RESEARCH
Volume 109, Issue 5, Pages 502-U123

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.111.249532

Keywords

ischemia; reperfusion; apoptosis; autophagy; GSK-3; Beclin 1; rapamycin; mTOR

Funding

  1. U.S. Public Health Service [HL59139, HL67724, HL69020, HL91469, AG27211]
  2. Foundation of Leducq Transatlantic Network of Excellence
  3. American Heart Association [0930179N]

Ask authors/readers for more resources

Rationale: Inhibition of glycogen synthase kinase-3 (GSK-3) protects the heart during ischemia/reperfusion (I/R), yet the underlying mechanisms of cardioprotection afforded by beta isoform-specific inhibition GSK-3 remain to be elucidated. Objective: We studied the molecular mechanism mediating the effect of GSK-3 beta activation/inhibition upon myocardial injury during prolonged ischemia and I/R. Methods and Results: Beta isoform-specific inhibition of GSK-3 by dominant negative GSK-3 beta in transgenic mice (Tg-DnGSK-3 beta) or in heterozygous GSK-3 beta knock-out mice (GSK-3 beta+/-) significantly increased, whereas activation of GSK-3 beta in constitutively active GSK-3 beta knock-in mice (beta KI) significantly decreased, myocardial ischemic injury after prolonged ischemia. In contrast, inhibition of GSK-3 beta in Tg-DnGSK-3 beta or GSK-3 beta+/- significantly reduced, while activation of GSK-3 beta in beta KI significantly enhanced, myocardial I/R injury. Inhibition of GSK-3 beta stimulated mTOR signaling and inhibited autophagy through a rapamycinsensitive (mTOR dependent) mechanism. Rapamycin enhanced autophagy and, at the same time, abolished the effects of GSK-3 beta inhibition on both prolonged ischemic injury and I/R injury. Importantly, the influence of rapamycin over the effects of GSK-3 beta inhibition on myocardial injury was reversed by inhibition of autophagy. Conclusions: Our results suggest that beta isoform-specific inhibition of GSK-3 exacerbates ischemic injury but protects against I/R injury by modulating mTOR and autophagy. (Circ Res. 2011; 109: 502-511.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available