4.7 Article

A Novel Ryanodine Receptor Mutation Linked to Sudden Death Increases Sensitivity to Cytosolic Calcium

Journal

CIRCULATION RESEARCH
Volume 109, Issue 3, Pages 281-U113

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.111.244970

Keywords

CPVT; sudden cardiac death; ryanodine receptor; calstabin

Funding

  1. National Heart, Lung, and Blood Institute

Ask authors/readers for more resources

Rationale: Mutations in the cardiac type 2 ryanodine receptor (RyR2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT-associated RyR2 mutations cause fatal ventricular arrhythmias in young individuals during beta-adrenergic stimulation. Objective: This study sought to determine the effects of a novel RyR2-G230C mutation and whether this mutation and RyR2-P2328S alter the sensitivity of the channel to luminal calcium (Ca2+). Methods and Results: Functional characterizations of recombinant human RyR2-G230C channels were performed under conditions mimicking stress. Human RyR2 mutant channels were generated by site-directed mutagenesis and heterologously expressed in HEK293 cells together with calstabin2. RyR2 channels were measured to examine the regulation of the channels by cytosolic versus luminal sarcoplasmic reticulum Ca2+. A 50-year-old white man with repeated syncopal episodes after exercise had a cardiac arrest and harbored the mutation RyR2-G230C. cAMP-dependent protein kinase-phosphorylated RyR2-G230C channels exhibited a significantly higher open probability at diastolic Ca2+ concentrations, associated with a depletion of calstabin2. The luminal Ca2+ sensitivities of RyR2-G230C and RyR2-P2328S channels were WT-like. Conclusions: The RyR2-G230C mutant exhibits similar biophysical defects compared with previously characterized CPVT mutations: decreased binding of the stabilizing subunit calstabin2 and a leftward shift in the Ca2+ dependence for activation under conditions that simulate exercise, consistent with a leaky channel. Both RyR2-G230C and RyR2-P2328S channels exhibit normal luminal Ca2+ activation. Thus, diastolic sarcoplasmic reticulum Ca2+ leak caused by reduced calstabin2 binding and a leftward shift in the Ca2+ dependence for activation by diastolic levels of cytosolic Ca2+ is a common mechanism underlying CPVT. (Circ Res. 2011; 109: 281-290.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available