4.7 Article

Phospholamban Ablation Rescues Sarcoplasmic Reticulum Ca2+ Handling but Exacerbates Cardiac Dysfunction in CaMKIIδC Transgenic Mice

Journal

CIRCULATION RESEARCH
Volume 106, Issue 2, Pages 354-362

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.109.207423

Keywords

calcium; Ca2+/calmodulin-dependent protein kinase II; phospholamban; heart failure

Funding

  1. NIH [HL46345, HL80101, HL30077, HL26057]
  2. American Heart Association
  3. Pharmacological Sciences Training [GM007752]

Ask authors/readers for more resources

Rationale: We previously showed that transgenic mice expressing Ca2+/calmodulin-dependent protein kinase II delta(C) (CaMKII-TG) develop dilated cardiomyopathy associated with increased ryanodine receptors (RyR2) phosphorylation, enhanced sarcoplasmic reticulum (SR) Ca2+ leak and lowering of SR Ca2+ load. We hypothesized that phospholamban (PLN) ablation would restore SR Ca2+ load and prevent the decreased ventricular contractility, dilation and mortality seen in CaMKII-TG. Objective: Our objectives were to generate CaMKII-TG mice lacking PLN, determine whether the maladaptive effects of cardiac CaMKII delta(C) expression were corrected, and establish the mechanistic basis for these changes. Methods and Results: CaMKII-TG were crossed with PLN knockout (PLN-KO) mice to generate KO/TG mice. Myocytes from wild type (WT), CaMKII-TG, PLN-KO and KO/TG were compared. The decreased SR Ca2+ load and twitch Ca2+ transients seen in CaMKII-TG were normalized in KO/TG. Surprisingly the heart failure phenotype was exacerbated, as indicated by increased left ventricular dilation, decreased ventricular function, increased apoptosis and greater mortality. In KO/TG myocytes SR Ca2+ sparks and leak were significantly increased, presumably because of the combined effects of restored SR Ca2+ load and RyR2 phosphorylation. Mitochondrial Ca2+ loading was increased in cardiomyocytes from KO/TG versus WT or CaMKII-TG mice and this was dependent on elevated SR Ca2+ sparks. Cardiomyocytes from KO/TG showed poor viability, improved by inhibiting SR Ca2+ release and mitochondrial Ca2+ loading. Conclusions: Normalizing cardiomyocyte SR Ca2+ loading in the face of elevated CaMKII and RyR2 phosphorylation leads to enhanced SR Ca2+ leak and mitochondrial Ca2+ elevation, associated with exacerbated cell death, heart failure and mortality. (Circ Res. 2010; 106: 354-362.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available